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Steady waves at the interface between two immiscible and inviscid fluids of differing 
density are studied. The governing equations are reformulated as a spatial Hamiltonian 
system leading to new variational principles for uniform states and travelling waves. 
Analytical methods based on the properties of the Hamiltonian structure and 
numerical methods are used to find new branches of steady nonlinear interfacial waves 
in the neighbourhood of the singularity c = cg. While the water-wave problem (upper 
fluid density negligible) near this singularity has received considerable attention the 
results for interfacial waves present some new features. The branches of travelling 
waves when plotted in (F, $)-space, where F and S are related to the energy flux and 
flow force respectively, show new bifurcations in the context of hydrodynamic waves 
even at very low amplitudes. The secondary bifurcations are explained by a spatial 
analogue of the superharmonic instability. An interesting analogy is also found 
between the spatial bifurcations of travelling waves and the Kelvin-Helmholtz 
instability. The new branches of waves occur at physically realizable values of the 
parameters and therefore could have implications for interfacial waves in applications. 

1. Introduction 
Waves at the interface between two fluids are of fundamental interest in 

oceanographic and atmospheric flows and their modelling, as well as in theoretical fluid 
mechanics. One of the best-known examples of two-layer oceanographic flow is the 
flow through the Strait of Gibraltar where evaporation over the Mediterranean forces 
an inflow of fresher water in an upper layer from the Atlantic and an outflow of saltier 
water in a deeper layer from the Mediterranean (see Bryden & Kinder 1991 for a 
review). Observations of the flow through the Strait of Gibraltar indicate the presence 
of two locations where critical flows occur (see Appendix C). Critical flows are an 
essential feature in the study of two-layer flows, since they can bifurcate into solitary 
waves and, in some degenerate cases, into fronts. One of the best-known experiments 
on two-layer fluids in the presence of interfacial tension is that by Thorpe (1969), which 
consisted in tilting a tube filled with two immiscible fluids and returning it to its 
horizontal position. Various wavy phenomena can occur along the interface, such as 
propagating Holmboe waves (see for example the recent paper by Pouliquen, Chomaz 
& Huerre 1994). In applications and experiments the density gradient is often sharp 
enough so that the two-fluid system, where the two fluids are treated as distinct and 
immiscible with a discontinuity in the density across the interface, provides a good 
model (see for example Koop & Redekopp 1981). In this paper a new formulation and 
new analytic and numerical results re presented for steady capillary-gravity interfacial 
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waves. This new formulation, which is quite general, also provides new tools to study 
subcritical as well as critical two-layer flows. 

The most fundamental waves at the interface between two fluids are waves that are 
steady relative to a moving frame of reference. The governing equations for steady 
interfacial waves are first formulated as a Hamiltonian system in space of the form 

K ( 2 )  2, = VS(Z),  (1.1) 
where 2 is a vector containing the dependent variables (velocity potential in the upper 
and lower layers, interface position, etc.), K ( 2 )  is a skew-symmetric operator and S(2) 
is the flow force for the interfacial wave problem in terms of the 2-coordinates. This 
spatial Hamiltonian structure is not to be confused with the Hamiltonian structure for 
the time-dependent water-wave problem (Zakharov 1968 ; Benjamin & Olver 1982) or 
the time-dependent interfacial-wave problem (Benjamin & Bridges 1992 ; Dias & 
Bridges 1994). The idea of reformulating steady wave problems as a spatial 
Hamiltonian system has been an area of recent and active interest (Benjamin 1984; 
Mielke 1991; Baesens & MacKay 1992; Bridges 1992a, b, 1994). The advantage of a 
Hamiltonian structure is that one can appeal to established general results on 
Hamiltonian systems to reveal new results for waves. 

There are two important physical quantities associated with linear waves : their 
phase velocity c and their group velocity cg. When the two velocities are equal, or 
nearly equal, the nonlinear problem becomes quite rich. In particular, solitary waves 
can bifurcate either from a critical flow (if the wave such that c = cg is a long wave with 
zero wavenumber) or from a train of infinitesimal periodic waves (if the wave such that 
c = cg is a wave with non-zero wavenumber). In this paper, motivated by the 
Hamiltonian structure of the steady wave problem, we obtain new results on the 
bifurcation of steady waves near the singularity c = cg with non-zero wavenumber k. 
The dispersion relation for capillary-gravity waves travelling at the interface between 
two unbounded fluids of density p (lower fluid) and p’ (upper fluid) can be written as 

where g is the acceleration due to gravity and a the coefficient of interfacial tension. 
The dispersion curve (see figure 1 a) exhibits a minimum, which is denoted by (ko, c,,). 
Since 

dc ld(kc) c 1 
d k - k  dk k k(c-cg) 

is zero at (ko, c,,), it follows that the group velocity cg is equal to the phase velocity at 
that minimum. From now on, the c = cg singularity will refer to the case corresponding 
to the minimum of the dispersion curve, and not to the long-wave case. 

For classical water waves, which correspond to p’ = 0, the ramifications of the 
singularity c = cg for the linear problem have been studied by Whitham (1974, pp. 
45 1-452). When a current U is present the singularity becomes cg + U = c and in the 
study of wavecurrent interaction this singularity corresponds to stopping velocities 
(cf. Gargett & Hughes 1972; Peregrine 1976, p. 52; Peregrine & Thomas 1979, $5). 
Gargett & Hughes (1972, figures 1, 2) note that stopping velocities lead to interesting 
interfacial wave patterns. The nonlinear problem near c = cg for the classic water-wave 
problem has received considerable attention recently (cf. Hogan 1983; Iooss & 
Kirchgassner 1990, Bridges 19926, $5; Vanden-Broeck & Dias 1992; Dias & Iooss 
1993; Akylas 1993; Longuet-Higgins 1993 and references therein). It has been found 

=-- 
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FIGURE 1. Local bifurcation of periodic travelling waves near the critical point (ko, co) : (a) dispersion 
curve for the linear problem, (b) global loop in the nonlinear problem when r < ro = 4 5 / 4  and 
c > co, (c) branches of nonlinear travelling waves when r > ro and c > co. 

for example that solitary waves which look like steady wave packets bifurcate from the 
trivial solution at the critical point (k,, c,). Working with a model equation, Benjamin 
(1992) showed that such solitary waves should also exist at the interface between two 
fluids. From a physical point of view, these waves can be approximated as steady 
solutions of the nonlinear Schrodinger equation, i.e. solutions for which the wave 
envelope and the oscillations inside travel at the same speed. 

However, new features occur in the nonlinear problem near the singularity c = cg 
when the upper fluid density is no longer negligible. This can already be seen when 
considering the weakly nonlinear branches of travelling waves. In figures l(b) and 1 (c) 
the branches of weakly nonlinear periodic travelling waves are plotted as a function of 
k, the wavenumber, for fixed c. In figure 1A is some measure of the amplitude of the 
wave, typically the amplitude of the first Fourier coefficient of the interfacial 
displacement. The branching diagrams for the weakly nonlinear travelling waves 
depend on the density difference. Let 

The parameter r is the normalized density difference between the two fluids and r,  is 
a critical value of r ,  which will be determined analytically below. When r > ro, which 
includes the case where the upper fluid density is negligible, the two branches of waves 
bifurcate in opposite directions. In other words the wavelength of a wave bifurcating 
from k, < k,  increases with amplitude whereas the wavelength of a wave bifurcating 
from k, > k, decreases with amplitude. When r < r, there is a dramatic change: the 
two branches are globally connected. These results will be confirmed analytically in $ 3 
and numerically in $5.  

Figure 1 does not tell the whole story, however, and here the spatial Hamiltonian 
structure is helpful in analysing the significance of the globally connected branches. 
The importance of the spatial Hamiltonian structure can already be seen in the linear 
problem. At the end of 92 the linearization of the spatial dynamical system (1.1) is 
studied. There it is shown that the point c = c, corresponds to a collision of spatial 
eigenvalues of opposite signature (cf. figure 4) that is reminiscent of instability in a 
time-evolution Hamiltonian system. It is interesting to note that this interpretation of 
the linear problem near the singularity c = cg gives a precise formulation of an 
observation of Gargett & Hughes. Gargett & Hughes (1972, p. 179) note that at the 
singularity c,+ U = c two wavenumbers which were real and distinct on one side 
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FIGURE 2.  Global branch of nonlinear travelling waves in the (F, S*)-invariant space 
when r < r,, and c > c,,. 

coalesce and become complex on the other. Indeed figure 4 represents, from a spatial 
dynamics viewpoint, precisely this observation. By further appeal to the Hamiltonian 
structure we will be able to obtain further results on the nonlinear aspects of the 
problem near the singularity. 

One way to obtain further information about the nonlinear branches of waves and 
secondary bifurcations is to plot the branches of waves in parameter space using the 
natural parameters from the Hamiltonian structure. The behaviour along the globally 
connected branch of travelling waves is smooth in the ( k ,  A)-plane as shown in figure 
1 (b), where c > c, and r < ro. However, the interaction between the capillary wave 
(k+k , )  and the gravity wave ( k + k , )  along the branch in figure 1 (b) is revealed as a 
cusp when plotted in the proper space. But it is not obvious a priori which are the 
proper parameters. The natural parameters turn out to be values of the level sets for 
the following functionals evaluated along a branch of travelling waves : 

where $ and $' are the velocity potentials in the lower and upper fluid layers. The first 
functional S, which is the flow force relative to the moving frame, is in fact an absolute 
spatial invariant (dS/dx = 0) for uniformly travelling waves (cf. Benjamin 1984). - s 
can be described as the wazle resistance of a steady wave train relative to a state of rest. 
The second functional is related, but not equal, to the energy flux: explicitly 
F = F / c -  c l  where F is the energy flux relative to the moving frame and I is the 
impulse. The functional F is the action functional for the spatial Hamiltonian 
formulation (it can also be related to Whitham's actionflux). There has been much 
work on the role of integrals for the classic water-wave problem and the interfacial- 
wave problem, and the invariant Sand the integral F (or its average over a wavelength 
F )  are well-known (cf. Pullin & Grimshaw 1983, equation (17)), but the importance of 
displaying the branches of travelling waves, parametrized by wavenumber, in terms 
of the values of the functionals 

If the wavelength is normalized to 27c, the wavenumber appears as a Lagrange 
multiplier in the analysis. In figure 2 the branch of waves along the global loop of figure 
1 (b) is plotted in the (F,S*)-plane where S* = S-koF.  The points k ,  and k ,  (where 

and S has not previously been recognized. 
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A = 0) lie at the origin and the point k = k,  with A + 0 corresponds to the point on 
the vertical axis. There are two interesting points - one between k ,  and k, and one 
symmetrically placed between k,  and k, - which show up as cusp points in the (F, S*)- 
plane (the choice of the (F,S*)-plane rather than the @,$)-plane allows a better 
visualization of the cusps). It is important to note that this picture is valid for all 
density ratios such that 0 < r < y o .  

In the linear problem the coalescence of a gravity wave and a capillary wave results 
in the critical point (k,, co) where the phase velocity equals the group velocity. In the 
nonlinear problem the interaction of a gravity wave and a capillary wave along the 
branch of nonlinear states of figure 1 (b) results in the cusp points. The cusp points are 
important because they carry information about secondary spatial bifurcations. In fact 
the cusp points are spatial analogues of the superharmonic instability! In $4 we adapt 
the Hamiltonian theory of the superharmonic instability due to Saffman (1985) to the 
spatial setting. It is shown that the cusp points correspond to spatial Floquet 
multipliers entering or leaving the unit circle. The position of the Floquet multipliers 
then leads to information about secondary bifurcation to new families of periodic and 
solitary waves. Motivated by the present study, Dias & Iooss (1994) have shown that 
dark solitary waves exist along the part of the branch connecting the cusp points. These 
are solitary waves that are biasymptotic to the travelling waves along the globally 
connected branch in figure 1 (b), between the two cusp points (see also figure 8). 

A second effect of the interaction of capillary and gravity effects along the global 
branches of waves, particularly when r z r,, is the appearance of a bifurcation point 
and a new branch of waves that does not connect with the trivial state. Analytical and 
numerical results are presented for the disconnected branches by working in a 
neighbourhood of parameter space with Ir - rol small in 93 and in $5. Numerical results 
indicate that the new disconnected branches persist for larger regions of parameter 
space and therefore should have implications for interfacial waves in applications. 

In 92 the governing equations for uniformly travelling capillary-gravity waves are 
presented and reformulated as a spatial Hamiltonian system. In terms of the spatial 
Hamiltonian structure, the critical point (ko,c,)  shows up in the linear problem as a 
collision of purely imaginary (spatial) eigenvalues of opposite signature. The collision 
of eigenvalues has been well-studied in the finite-dimensional Hamiltonian systems 
literature (van der Meer 1985; Bridges 1990, 1991). Recourse to the Hamiltonian 
theory is made here to analyse the spatial bifurcations in the interfacial-wave problem. 

In 93 a new variational principle based on the spatial Hamiltonian structure and 
weakly nonlinear theory are used to find all local bifurcations of travelling waves near 
the point (k,, c,) when the density difference r is near the singular value r,. The 
unfolding of this singularity contains globally connected branches, bifurcation points 
at finite amplitude and isolated branches. It is remarkable that such structure can be 
found analytically. The ( r ,  c) parameter space near ( y o ,  c,,) is divided into five regions, 
each of which having distinct bifurcation diagrams. In $4 the role of the integrals S, 
and Qtot (total mass flux) in the spatial bifurcations is considered. 

In $5 the bifurcations of finite-amplitude waves are studied numerically. For the 
numerical computations we use a scheme based on Fourier collocation, originally 
proposed by Saffman & Yuen (1982). The numerical calculations confirm the analytic 
predictions and extend the results to finite amplitude. The numerical calculations show 
that the disconnected branches, which arise through a bifurcation point (the curve B, 
in figure 6) ,  persist for large regions of (c, r )  parameter space. As far as we are aware 
these branches have not been previously found. Here they are studied by combining the 
analytic predictions with numerical continuation. 
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There is an interesting similarity between the singularity (k,,, CJ for steady waves and 
the Kelvin-Helmholtz instability for time-dependent interfacial waves with a current. 
This correspondence is the subject of $6. 

A discussion of problems that remain open (in particular the problem of what 
happens to the solitary waves with oscillating tails bifurcating at the critical point, as 
the density ratio approaches the critical density ratio) and of physical consequences of 
the results described in the preceding sections are provided in $7. 

In Appendix A the spatial invariants (flow force, mass fluxes) are derived from the 
conservation laws. In Appendix B the details of the construction of the spatial 
Hamiltonian structure are presented. In Appendix C, we present a novel variational 
principle for uniform flows that includes a new definition for criticality of uniform 
flows. Finally, in Appendix D, a new variational principle for periodic travelling waves 
that includes a characterization of the coupled mean flow is presented. 

2. Interfacial waves and spatial Hamiltonian structure 
The primary purpose of the present study is to analyse steady waves at the interface 

between two stably stratified inviscid incompressible fluids. For uniformly travelling 
waves, a frame of reference can be chosen in which the mean of the horizontal velocity 
is zero (or equal to - c  if the frame of reference moves with the wave) and the mean 
height of the interface is zero, in which case Bernoulli’s constant is non-zero. 
Alternatively, one can choose Bernoulli’s constant to be zero with a non-zero mean 
height. We will make the latter choice below. It will be shown that the problem of 
steady waves can be formulated as a spatial Hamiltonian problem. Such a formulation 
can be generalized to uniform flows, waves in the presence of currents, waves coupled 
with a mean flow. Some extensions are provided in Appendices C and D. 

The problem is first formulated for a channel of finite height as shown in figure 3. 
The channel height is h + h’ and the interface y = q(x) separates two fluids of density 
p and p’ with p > p’ > 0. the flow field is two-dimensional and irrotational in each layer 
with velocity potentials $ and $‘ satisfying 

with boundary conditions at the upper and lower walls 

$ y = O  at y = - h  and $ ; / = O  at y=h’ .  

At the interface there are two kinematic conditions 
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y = - h  

FIGURE 3. Schematic of the two-layer fluid problem. 

with R = +(p-p’)c2. The symbols g and (T denote the acceleration due to gravity and 
the coefficient of interfacial tension respectively, and 

w = qz/( 1 + yy ’2 .  (2.5) 

The set (2.1)-(2.4) with the definition (2.5) are the governing equations for steady 
interfacial waves. Associated with the set of equations are spatial invariants. For 
example the flow force and the mass fluxes in the upper and lower layers are 
independent spatial invariants. The spatial invariants for the above system are derived 
in Appendix A from the mass, impulse and energy conservation laws for the time- 
dependent problem. 

The governing equations can be reformulated as a Hamiltonian system with 
evolution in the x-direction. 

Introduce weighted velocities 

2.4 = P($z-c), u‘ = p’($;-c), 

a = uly-7(z) a‘ = u’ly=7(z), 
with interface values 

(2.6a) 

(2.6b) 

as well as interface values for the potentials 

@(XI = $(X,Y)ly=t(z)? WX) = $’(x,y)ly=7(z). (2.7) 

@z = [$z + $44 rzlly-7(z) and @; = [$; + $I rzIIyP7(z). (2.8) 

It is then immediately obvious that 

In terms of the above coordinates the governing equations are reformulated as follows. 
The kinematic conditions (2.3) can be rewritten as 

a r z - ~ $ g  = O} at y = r(x). (2.9) 

In order to reformulate the dynamic condition we use the following identities which are 
verified using (2 .6H2.9)  : 

a’rz +$I = 0 

(2.10) 
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It is now straightforward to verify that the governing equations (2.1), (2.3) and (2.4) 

I -*7, = -P$yly=?, a'% = P'$;lpB, 

I u@,-u'@;-CTW, = R - ( p - p ' ) g q + -  -u2+p$:-;..."py$]~ 1 
2 P  " P Y=V 

+cu-cu' ,  

(2.11) 

The reformulation (2.1 1) leads to an interesting variational structure for the 
equations governing steady waves. Let Z represent the vector-valued set of dependent 
variables and introduce the Z-dependent operator K(Z), 

Then (2.1 1) has the representation 

K(Z) z, = VS(Z). (2.13) 

The left-hand side is verified by writing out K(Z) Z, using the definition in (2.12) and 
comparing with (2.11). On the right-hand side V S  is the gradient of the flow force 
S-cZ. To verify the representation on the right-hand side of (2.13) it is necessary to 
show that S represents the flow force and to introduce an inner product for the 
definition of the gradient. 

The flow force is the steady part of the flux associated with the impulse conservation 
law (cf. Appendix A) and in terms of the set of Z-coordinates is 

1 " 1  h'l 1 
S(Z) = 1 - [ - (u + P C ) ~  - p$i]  dy + l9 3 [-J (u' + P ' C ) ~  - p'$h2 dy 

- h 2  P 

-&I -p')g$ + a[l - (1 - w ~ ) " ~ ] .  (2.14) 

It remains to consider the gradient of the above functional. For eight-component 
vectors of the form in (2.12), where the first four components are independent of y and 
the last four depend on the y-cross-section, a suitable inner product is 
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where the 7 subscript denotes that the 
inner product (2.15) it is easily verified 

VS(Z) %f 

I 

inner 
that 

product 

- P+YI Y’7 

is 7-dependent . In terms 

\ 

+ c(u  - u‘) 

of the 

(2.16) 

\ dip' + c I 
Comparing (2.16) with the right-hand side of (2.11) completes the verification of the 
representation (2.13). 

The system (2.13) is a spatial Hamiltonian system with the skew-symmetric operator 
on the left-hand side. It is interesting that the representation (2.13) of the governing 
equations shows explicitly the importance of the flow force whereas this information 
is only implicit in the governing equations (2.1)-(2.5). The abstract properties of the 
system (2.13) and some of the consequences of the Hamiltonian structure are 
considered in Appendix B. The operator K ( Z )  is not invertible and such systems, 
although they retain most of the properties of standard Hamiltonian systems, are 
sometimes called quasi-Hamiltonian systems (Benjamin & Olver 1982, Appendix 1 ; 
Benjamin & Bridges 1992, Bridges 1992b, equation (3.15)). 

The study of steady states by first reformulating the system as a spatial Hamiltonian 
system has been the subject of recent and active interest (cf. Benjamin 1984; Zufiria 
1987; Mielke 1991 ; Baesens & MacKay 1992; Bridges 1992a, b, 1994). The advantage 
of a spatial Hamiltonian formulation is that one can appeal to many known results on 
Hamiltonian systems to obtain new results and a more complete understanding of 
steady waves. In particular, a variational principle for periodic uniformly travelling 
waves will be derived in $3 and used to organize the spatial bifurcation of travelling 
waves near the critical point where c = cg for interfacial waves. In $4 the abstract 
properties of the spatial Hamiltonian structure are used to prove results on the 
movement of spatial Floquet multipliers leading to information about secondary 
bifurcations of travelling waves and new families of waves. A similar structure to (2.13) 
also exists for uniform flows and leads to a variational principle for uniform flows (see 
Appendix C). A variational principle can also be derived for periodic travelling waves 
coupled to the mean flow effects (see Appendix D). 

For simplicity both layers are now supposed to be of infinite height (h+ 00 and 
A’+ 00). By treating the governing equations as a spatial Hamiltonian system we 



130 

- KO = K(z)lu--fc, u’=-/fc - 

T. J .  Bridges, P .  Christodoulides and F. Dias 

0 0 -p‘c 

-pc p/c 0 
0 0  CT 

0 0  0 
0 0  0 
0 0  0 

\ o  0 0 

$ c < c, 

c = c, c > c, 

FIGURE 4. Collision of spatial eigenvalues of opposite signature when passing 
through the critical point (ko, co). 

obtain an interesting interpretation of the dispersion relation for waves linearized 
about the uniform flow. An important point on the dispersion curve is the point where 
c = cg. In the spatial context the point c = cg is associated with a spatial collision of 
eigenvalues (cf. figure 4). This is verified as follows. The linearization of (2.13) results 
in 

where 
K0Z, = AZ, 

and 

AZEf D’S(0) Z = 

(2.17) 

0 0  0 0  0 
0 0  0 0  0 
a 0  0 0  0 
0 0  0 0  0 
0 0 - 1 0  0 
0 1  0 0  0 
0 0  0 0 - 1  
0 0  0 1  0 

where u (resp. u’) is now equal to p$, (resp. p’#L) and w = vZ. To complete the 
specification of the linear problem we need the far-field boundary conditions (#, + 0 
as y+-m and # ; + O  as y-++m) and the compatibility conditions (boundary 
conditions on 4,#’ and the constraints (B 7)): 

#ly.-o = @, #’ly=o = @’, #yly=o+cw = 0, #;ly=o+cw = 0. 

(A -ikKo)2 = 0 

Setting 2 = Zeilcz +c.c. results in the eigenvalue problem 
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with dispersion relation 

(2.18) 

The dispersion relation in the (k, c)-plane has been plotted in figure 1 (a). The point of 
interest here is the critical point (k,, c,) defined by solutions of (2.18) that also satisfy 
dc/dk = 0. This results in 

2 - (P-P’Ig flk c -  
(P+P’)k P+P” 

c, = (;I:,)’” - and k, = ( (P-P?!? cT ) 1’2 . 
Before proceeding to analyse the nonlinear problem we re-examine the critical 

point (k,, c,) from a spatial dynamical systems viewpoint. Inverting the dispersion 
relation (2.18) by letting h = ik with AEC and solving for h as a function of c yields 

(2.19) 

The complex values of h given by (2.19) are plotted as functions of c in figure 4. When 
c E R is treated as a control parameter, the spatial eigenvalues pass through, at c = c,, 
a spatial collision of eigenvalues of opposite signature (see Bridges 19923, $ 5 )  for the 
role of signature and momentum flux sign in such collisions). 

The above result is a dynamical systems interpretation of a result first noted by 
Gargett & Hughes (1972). Gargett & Hughes (1972, p. 179) note that when c,+ U = c 
two wavenumbers which were real and distinct on one side coalesce and become 
complex on the other. The Gargett & Hughes description is precisely as shown in figure 
4 (within the present context U = 0) in going from c > c,, to c < c,. By placing this 
result in a Hamiltonian spatial context we can appeal in @3-5 to known results on the 
nonlinear behaviour of Hamiltonian systems near such a singularity. 

3. Bifurcation of travelling waves when c is near c, 
The branches of periodic travelling waves are altered significantly by the singularity 

c = cg. In this section the branches of travelling waves near c = cg are constructed using 
a variational principle based on the spatial Hamiltonian structure. The effect of the 
singularity c = cg is already present when h, A’+ 00 and therefore we restrict to this 
case. Scaling x into kx, so that k appears in the governing equation (2.13), results in 

k K ( 2 )  2, = VS(2).  
But letting 

and noting that V F  = K ( 2 )  Z,, with the gradient of F defined as in (2.19, but with an 
additional integration over an x-interval, it follows that 

V S ( 2 )  = kVF(2) .  (3.2) 
Periodic travelling waves are then 2x-periodic solutions of (3.2). Restricting the 
functional F to 2n-periodic functions and defining 
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we can characterize periodic travelling waves as critical points of S (recall that S is a 
spatial invariant and does not have to be averaged) on level sets of F, or, with ~ E R  as 
Lagrange multiplier, critical points of the unconstrained functional 

9 = S- kF, (3.3) 

since V B  = 0 recovers (3.2). In the above variational principle a solution of V B  = 0 
depends on k. The integrals S and k evaluated on a solution depend on k through 2. 
Therefore 

a,$= (vS(Z),z,) = k(VF(Z),Z,)  = kakF. 

It follows that a,S = 0 implies a,F= 0 when k + 0. This property will be important 
in the analysis in $4. 

In this section we will use the above variational principle to construct weakly 
nonlinear waves near (ko7 co). We expand the solution in a Fourier series in x;  

(3.4) $(x, y )  = B, efky sin x + B, e+2ks sin 2x + B, e+3ky sin 3x + . . . , 
$’(x, y )  = Bi eCky sin x + Bi e-2ky sin 2x + BL e-3ky sin 3x + . . . . 

Expressions for the other components of Z (namely @, @’, w, u and u’) are easily 
obtained from (3.4) using the definitions in (2.5)-(2.7). Substitution of (3.4) into (3.3) 
results in 

Retaining three coefficients in the expansions and setting aF/aBj  = aB/aB;  = 0 for 
j = l ,2,3 and a B / a A j  = 0 for j = 2,3 yields the following expressions for the 
coefficients : 

1 T(X) = A,cosx+A,cos2x+A3cos3x+ ... , 

B = B ( A 1 7  A,, . . ., B,, B,, . . ., B;, Bk, . . . ; k). 

(3.5) 

(3.6) 

J 
I 

B, = cA, { 1 -;kA, ++k’A:} -ickA, A ,  

+ cA, {$YA , A ,  + gkz A; + &k3A, A: + &k44}  + . . . , 
B, = c{A,  - ;kA : + A ,  [ - 2kA3 + ?$‘A,A, - &k3AA3} + . . . , 
B, = c{A3 - $4, A ,  + $k2A:} + . . . , 

(3.7) 

Bi = -cA,{l + $ L 4 , + ~ k 2 A ~ } - ~ ~ k A , A ,  

- cA,  { !PA , A ,  + $k2A; - $k3A2 A;  + &k4A;1} + . . . , 
Bi = - c{A,  + ikAq + A ,  [2kA3 + ik2A, A ,  + &k3A3} + . . . , 
BL = - c{A,  + ikA,  A ,  + $k2A;} + . . ., 

and 

where 
A ,  = g ,A;+g ,A t+  ..., A ,  = g,A;+ ..., 

(3.8) i s1 = Xk2/P,) (P  -P’> c2, 

g ,  = (g , /Pz> {2P,(2g, - &k2) - 3 d 4  + ik3(p + p’) c2}, 

g, = f(k4//P,> {$- - ( P  -P’) c2/2k + WP,) ( P  -p’)2c4}> 
with 

P, = ( p  +p’) nkc2 - ( p  -p’ )g-  d k 2 .  

Substitution of (3.5)-(3.7) into the expression for B results in a reduced functional 
@(Al; k ; p )  wherep indicates parameters. Setting a@/aA,  = 0 results in the bifurcation 
equation for the travelling waves, which, accurate to fifth order, is 

A,&, k, c, r) = 0, 
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FIGURE 5. Bifurcation of travelling waves near the critical point (k,, c,) when r + r,. 

with 

The definitions of the new symbols are 

f = ( p  + p’) C2k - ( p  -p’) g - n K 2  +fl Z +f2 Z2 + . . . . (3.9) 

z = A;,  

f =-Enk6+11( + 9k3 2 
64 3 2  p P’>C2k5+~k4(P-P’)C2gl-3P3g~-2. gl [ (p+p’)C2-2nk].  

Let us first consider the bifurcations in the neighbourhood of the critical point 
(0, k,, c,, r)  (the minimum of the dispersion curve) away from the singularity r = r,, 
which corresponds to the vanishing off,. Recall that 

k ,  = [ ( ~ - p ’ ) g / a ] ’ / ~  = [2rpg/(l  + r ) ~ # / ~ ,  
co = [ 2 ~ r k , / ( p + p ’ ) ] l / ~  = [vk,( l  +r)/p].’12 

The simplest Taylor expansion off about that critical point yields 

4 

CO 
f = -  n(k - k,)’ + - nki(c - co) + 2crk:(r2 - ri)  z + . . . . 

The corresponding bifurcation diagrams are as shown in figure 5 and they verify the 
diagrams presented in figure 1 (b ,  c). The bifurcation of periodic travelling waves is 
analogous to the bifurcation that occurs in the unfolding of the collision of eigenvalues 
of opposite signature in a finite-dimensional Hamiltonian system (compare with figure 
2 of Bridges 1990). The diagrams are also reminiscent of the bifurcation diagrams near 
the Kelvin-Helmholtz instability (compare with figure 3.1 of Benjamin & Bridges 1992, 
part 11) but in the Kelvin-Helmholtz problem c is the abscissa and U -  U‘ is the control 
parameter. 

In the neighbourhood of r = yo( = +2/5 )  the bifurcations of travelling waves become 
more complex. The coefficient of z in f vanishes and higher-order terms are needed. 
Note that the singularity r = ro corresponds to the singularity a+P = 0 in Dias & 
Bridges (1994) (fixing b = 1 along the curve between regions 4 and 5 in figure 5 .1  of 
Dias & Bridges, which corresponds to the minimum of the dispersion curve). The 
simplest Taylor expansion off about the point (0, k,, c,, y o )  is 

f = -  n(k - k,)’ + (4/c , )  nk,2(c-- co) +f:,(r - yo)  z +fg!(k- k,)  z +if:! z2 + . . ., (3.10) 

where the superscript 0 denotes evaluation at the critical point. One easily finds that 

flz = 4r0nk4, > 0, J”,, = - ink:  < 0, fi, = &nk;(21 d5- 1) > 0. 
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B, 

r 

FIGURE 6 .  Partition of the ( r ,  c)-plane near (r,,, c,) into regions with distinct bifurcation diagrams. 

Introducing the following scaling of the variables : 

z" = Z ( $ f y ,  f - k, = (k - k,) e, 

(3.10) becomes 

- -  
f = - (k  - k,)2 + (c" - 2,) + 2(?- ?,) z" - 2/21f"x,l (f - f,) z" + + . . . . (dY2 

Letting 

(3.11) 

the basic (truncated) equation for bifurcating travelling waves near the codimension-2 
point ( y o ,  c,) is 

(3.12) 

The solutions set of this type of equation has been analysed completely by Golubitsky 
& Schaeffer (1985, pp. 272-278) and by Bridges (1990, pp. 591-595). The solution set 
can be quite complicated and depends on the region in the (c, r)-space. Using the theory 
in the aforementioned references the (c,r)-plane is divided into regions as shown in 
figure 6 ,  each region having a distinct bifurcation diagram as shown in figure 7. 

In figure 7 the wavenumber versus amplitude is plotted. For c fixed and c > 0 the 
bifurcation diagrams depend on r .  For r + ro the only branch for sufficiently small 
amplitude is the globally connected branch (as expected from figure 5). But as r is 
increased to region IV an additional disconnected branch appears (for a given 
wavenumber there are two branches of travelling waves with that wavenumber but 
with differing amplitudes). Along B, the isolated branch forms a bifurcation point with 
the loop resulting in two branches which then break apart when r is increased beyond 
the values corresponding to B,. Further increase in the value of r leads to region I 
which is qualitatively similar then for all r % r,  (in agreement with figure 5).  

Along the curve B, the two branches of travelling waves exactly intersect as shown 
in figure 7 (diagram B,). The B, curve in the (c, r)-plane is a half-parabola defined by 
f = f ,  = f k  = 0 which results in 

f = - (f + (2- 2,) + 2(1- F,) 2- 2m(f- f,) Z+ F .  

c-c, 5 m2 
~ = - -  ( )(r-r,) '  with r -ro  < 0. 

co 9 m + l  
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IV I11 I1 

___) 

v k  

FIGURE 7 .  Qualitative bifurcation diagrams for travelling waves near the critical point (k,,, c,,, r,,) 
labelled by region number as in figure 6 .  

Similarly, along the curve Ha in the (c, r)-plane a branch changes bifurcation direction. 
The curve Ha is a parabola defined byf=f, = 0 (and z = 0) which results in 

c-co 

CO 

-- - :(r - ro)2. 

Note that the curves B, and H, are parabolas in the neighbourhood of (r,,  c,) in the 
(r, c) plane. However, these curves have some global (that is for (r, c) far from (yo, co)) 
continuation that could be followed numerically. 

4. Spatial invariants and secondary bifurcations 
The spatial Hamiltonian structure points to the importance of the functionals S, Q, 

Q and F. Evaluation of these integrals along branches of travelling waves leads to 
interesting geometrical information. It turns out that the slopes of the curves in 
parameter space carry information about secondary bifurcation of waves. In this 
section the theory of Saffman (1985) for the superharmonic instability will be adapted 
to the spatial setting to obtain the results on the movement of spatial Floquet 
multipliers. 

To evaluate the integrals the results of $3 for travelling waves near the singularity 
c = cg are used, concentrating on the cases r + ro and r < yo. Further bifurcations occur 
when r x ro and the integrals in this case will be evaluated numerically in $5.  

Evaluating F at a periodic travelling wave and averaging over a wavelength results 
in 

(4.1) 
w k0 I;= ~ a ( k - k , ) A ; - a - - ( c - c , ) A ; + ~ a k ~ A : +  .... 

CO 

A similar calculation for S, Q and Q results in 

(4.2) 

S = +a@'- ki)  -4; +&rk4,(r2 +&) A; + . . ., 
Q = ~ c k A ~ + ~ ~ c k 3 ( 2 r 2 + r - ~ ) A ' : +  ..., 

Q = ~ ' c k A ; + ~ ' c k 3 ( 2 r 2 - r - ~ ) A : +  ..., 
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FIGURE 8. Amplitude, S and S* as functions of wavenumber k for 
branching travelling waves when r < ro and c > co. 

and therefore 

Qtot  = Q + Q  = +(p+p’) ckA:+:(p+p’)ck3(3r2-;)A;1+ ... . 

For fixed c and r each of the above expressions depends only on the wavenumber k 
through the bifurcation equation 

a(k-k0)’-(4/co)  g k t ( c - c , ) - 2 a k ~ ( r 2 - r ~ ) A : +  ... = 0. (4.3) 

A shifted flow force is defined by 

def - - k2 

CO 
S* = S -  k,  F = ia(k- ko)2A; + g?(c- co) A; ++akt(r2 - r:) A: + . . 

k2 

CO 

Figure 8 shows the integrals S and S* plotted as a function of k .  First, in (a)  the 
amplitude as a function of wavenumber is plotted using (4.3). The branch of travelling 
waves is globally connected when plotted as a function of wavenumber. There are two 
points along the branch that are important for secondary bifurcations but the 
amplitude versus wavenumber diagram does not show these points (although they are 
marked for reference to the other figures). In figure 8(b) the flow force, using (4.2), is 
plotted versus wavenumber. Note that there are two points where a, S = 0. In figure 
8(c) the rotated flow force S* is plotted. Maxima of S* correspond to points where 
a, 3 = 0. In 6 5 more complete results on the waves in invariant space are given and Qtot 
along the branches of travelling waves is also plotted. 

As noted in the introduction, when S, the flow force, is plotted versus E, the spatial 
action, cusp points appear when a, S = 0. Moreover, the travelling waves in (S* ,  P)-  
space form the boundary of a swallowtail. This is verified as follows. Introduce scaled 
variables 

= + [ 3 ~ ( k - k o ) 2 + 4 ~ ~ ( ~ - ~ o ) ] A q +  ... . 

h = k / k ,  - 1 and p = (4/c0) (c - co). 
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k0 K 
FIGURE 9. Projection of a, S = 0 curve onto the ( k ,  c)-plane showing the region, between the two 

parabolas, where a pair of spatial Floquet multipliers lies on the unit circle. 

Then, for p and h small the functionals ( S * , F )  are 

where A; has been eliminated using (4.3). 
In (4.4) 0-, k, and r are fixed. Moreover for any fixed p > 0 with p sufficiently small 

(4.4) is the parametrization by h of a curve in the ( S * ,  f)-plane. It is straightforward 
to verify that the curve for -,u112 < h < pliZ forms the boundary of a swallowtail as 
shown in figure 2. The cusp points occur when dF/dh = dS*/dh = 0 which results in 
h = &@/3)'12. Expressed in terms of c and k the cusp points satisfy, to leading order 
(lc--c,I, Ik-kol small), 

3 -- '-" - -(k-k,)'+ ... , 
c, 4ki (4.5) 

which is a parabola in the (k,c)-plane, as shown in figure 9. On the other hand, the 
dispersion curve near (ko, c,) has the form 

1 c-co - -(k-k,)2+ ... -- 
c, 4ki 

and therefore the projection of (4.5) onto the (k ,  c)-plane lies interior to the dispersion 
curve. We will argue that the curve (4.5) separates the region interior to the dispersion 
curve into two regions each containing distinctly different secondary bifurcations. To 
show this the theory of Saffman for superharmonic instability will be adapted to the 
spatial setting. 

It is important to note in the following discussion the distinction between the use of 
Floquet theory in space and time. Whereas a hyperbolic Floquet multiplier in time 
corresponds to a linear instability, a hyperbolic Floquet multiplier in space does not in 
general have any significance for the linear stability in the time-dependent problem 
although it is possible to establish a relation in some cases (cf. Bridges 1992a, $5) .  

The theory of Saffman (1985) for the superharmonic instability can be summarized 
as follows. Consider the following Hamiltonian system 

u, = J V X (  v), (4.6) 
where for simplicity U E  RZn (a finite dimensional approximation to the water-wave 
problem for example) and J is a constant skew-symmetric operator (constancy of J is 
not essential but simplifies the exposition). Suppose there exists a periodic solution of 
(4.6) : 
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E dX/dw > 0 d 2 l d w  = 0 E d2/dw< 0 

FIGURE 10. Position of Floquet multipliers predicted by the superharmonic instability theory. 

U(t+27c/w) = U(t) 

with w, the frequency, varying along a branch of periodic states. Now consider the 
linearization of (4.6) about the periodic state 

(4.7) 

It is clear that o= Ut is always a solution of (4.7). Therefore zero is a Floquet 
exponent of (4.6) (it is in fact double: algebraic multiplicity two but geometric 
multiplicity one). Saffman’s theorem states that a necessary condition for a quadruple 
zero Floquet exponent (since zero eigenvalues always occur in pairs algebraic 
multiplicity three is not possible) is dX/dw = 0. In other words the Hamiltonian 
function plotted versus the frequency along a branch should be stationary (in the 
water-wave problem the superharmonic instability corresponds to a maximum in 
(X ,  w)-space). In Saffman’s paper the argument is posed in terms of c, the wave speed; 
but since the wavenumber is fixed there the argument is equivalent to that with the 
frequency. The movement of Floquet multipliers is as shown in figure 10 (the theory 
predicts only the middle picture but under generic perturbation the eigenvalues move 
as shown in the adjacent pictures). The theory does not predict whether d#/dw 
positive or negative correspond to the stable case; only that there is a change of 
stability when d%‘/dw = 0. Therefore we introduce an application-dependent 
parameter e = & 1. For example e = + 1 for the superharmonic instability that occurs 
in the water-wave problem (that is, when d%‘/dw > 0 the wave is superharmonic- 
stable). Another feature of the superharmonic instability theory is that the frequency 
(or wave speed if k is fixed) and the Hamiltonian function have maxima at different 
values of the amplitude, in general. 

It is interesting to note that, for finite-dimensional Hamiltonian systems, the 
connection between stationary points of the Hamiltonian function, along branches of 
periodic orbits, when plotted as a function of the frequency, and the movement of 
Floquet multipliers is a standard tool in the numerical calculation of branches of 
periodic orbits in celestial mechanics (cf. Deprit & Henrard 1968). 

The superharmonic instability has an analogue in the spatial setting. The analogous 
Hamiltonian functional in (4.6) is the flow force, the action is the functional Fand the 
analogue of the frequency is the wavenumber, since in the spatial setting the 
wavenumber is taken to vary along the branch of waves. In fact figure 8 presents 
precisely the features of the superharmonic instability in space (although no instability 
is implied in the spatial setting); dA,/dk = 0 at a different point from that where 
a, S = 0 (a, Sis  the analogue of d#/dw) and moreover it is an immediate consequence 
of Saffman’s theory that when a,$= 0 a spatial Floquet multiplier is entering or 
leaving the unit circle through + 1 as shown in figure 10 (with (#, w )  replaced by 

Since a, S = 0 twice in the interval in which the global loop of travelling waves exists 

Ot = JD2X( v) O. 

(S, 4). 
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FIGURE 1 1. Position of spatial Floquet multipliers treated as a function of S* and wavenumber k .  

in figure 8 the movement of the spatial Floquet multipliers is as shown in figure 11. It 
is remarkable that such bifurcations of the spatial Floquet multipliers occur at low 
amplitude. For example such bifurcations have been found numerically at large 
amplitude in the classic water-wave problem by Baesens & MacKay (1992) and in a 
modified Korteweg-de Vries equation by Zufiria (1987). In Bridges (1992a) a model 
problem with spatial collision of multipliers and a swallowtail in invariant space is 
studied (see 94 of Bridges (1992a) particularly figures 2 ,6 ,8  and 9). From a theoretical 
point of view, the present results show that capillary-gravity interfacial waves have the 
advantage that interesting secondary bifurcations occur at low amplitude and can 
therefore be studied analytically. 

There are two distinct regions along the branch separated by the points where 
a,S= 0. In the region between the two parabolas in figure 9, where i3,S < 0, the 
second pair of multipliers on the unit circle would lead to bifurcations of p/q 
subharmonics as in Longuet-Higgins (1985) and Baesens & MacKay (1992). However, 
in the interior range (in terms of (p, A )  coordinates : - (JA/~)'/~ < h < ( , ~ / 3 ) ' ' ~ )  the basic 
pair of Floquet exponents is hyperbolic. The hyperbolic periodic states have a stable 
and unstable manifold. If the stable and unstable manifolds should intersect then the 
resulting state could be a solitary wave. In fact, inspired by the present analysis, the 
region where the spatial Floquet multipliers are hyperbolic has been analysed by Dias 
& Iooss (1994) and they have shown that indeed a new family of solitary waves exist 
along this branch. They are 'dark' solitary waves (using terminology from optics 
theory); they are biasymptotic to periodic states as x+ k 00 whose amplitude does not 
decay to zero. 

5. Finite-amplitude travelling waves - numerical computations 
Our aim in this section is to study numerically the bifurcations of finite-amplitude 

interfacial travelling waves near the critical point (k,, c,) in general and near the point 
(ko, co, r,) in particular. For the numerical computations we use a scheme, based on a 
Fourier collocation method, originally proposed by Saffman & Yuen (1982) for 
computing interfacial gravity waves in the presence of a current and modified by 
Bontozoglou & Hanratty (1990) for interfacial capillary-gravity waves. It is customary 
in the numerical computation of water waves to fix the wavenumber k and solve for 
the wave speed c along a branch of travelling waves. A key feature of the present work 
is the importance of the dependence of the solution branches on the wavenumber, with 
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c treated as a control parameter. It is precisely the variation of the wavenumber along 
solution branches that leads to the spatial bifurcations studied here. The spatial 
bifurcations near the codimension-2 point (co, yo)  and the bifurcations in invariant 
spaces (F, S) and Qtot, S) are considered numerically. 

Using an inverse formulation the physical coordinates (x, y )  below and (x’, y’) above 
the interface are expanded in finite Fourier series in the complex potentials $ + i$ for 
the lower fluid and $’ + i$’ for the upper fluid : 

Without loss of generality @ and @‘ are defined so that they are equal to zero on the 
interface. 

Details on how to compute the unknowns a,, a,, . . ., aN,  a,, a,, . . ., a;, s,, . . ., sN (where 
N is the truncation order) can be found in the references mentioned at the beginning 
of the section. For the numerical computations a scaling such that g = u = p = 1 is 
chosen. In all the computations presented below, forty mesh points ( N  = 40) were used, 
a number that was found sufficient to ensure accuracy for computing waves of small 
energy. 

To obtain expressions for the kinetic and potential energies we integrate and average 
the expressions for K, V ,  and V, in Appendix A, equation (A 4). This results in 

, ,  

I?= F I ’ K d x  = tc2[(-)ah-a0)], 1-r  
n l + r  

The spatial Hamiltonian structure points to the importance of the functionals 3, P 
and Qtot. These functionals can be expressed in terms of the averaged energies (see 
Appendix A). A summary is given in the form t)fr -2 0 : ]( i ) .  

- 3  -1 

We begin with the case where r is close to one (small upper fluid density) and as 
expected the results are similar to the results of the basic water-wave problem. Figure 
12(a-c) shows the bifurcation diagrams for r = 0.9 in three different planes, with c 
treated as control parameter. The wavenumber-amplitude diagrams in figure 12 (a) are 
in qualitative agreement with those in figure 5.  Starting with c > c,, the two branches 
of travelling waves (the capillary branch and the gravity branch) meet at (ko,O) for 
c = c, and then, for c < c,, they detach as a single branch. Note that in the numerically 
computed pictures there is a decrease in the slope of the ‘left’ branch when k is smaller 
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FIGURE 12. Numerical branches of travelling waves in three different planes for r = 0.9. (a) (k ,  A)- 
plane. The outer branches correspond to c > c,, the middle one to c = c, and the inner (detached) one 
to c < c,. (b)  (s, Q,,,)-plane: same as in (a), with three b_ranches hard to distinguish. The blow-up near 
the origin (inset) provides a better visualization. (c) (F, S*)-plane: the inner branch corresponds to 
c > co, the middle one to c = c, and the outer one to c < c,. Again a blow-up near the origin allows 
a better visualization. 

than a critical (parameter-dependent) value. This is due to the 1:2 resonance 
phenomenon occurring in the neighbourhood of k = 1/2/2. The diagrams in the 
(Q,,,,S)-plane in figure 12(b) behave as in the basic water-wave problem (Bridges 
1992 b, figure 5). In the (F, S*)-plane (see figure 12c), the branches of travelling waves 
are of opposite curvature to the ones in the (Q,,,, S)-plane and the detached branch 
takes negative values near the origin. 

In figure 13(a-c), the other extreme for the parameter r is illustrated. When c < c, 
there are no solutions at low amplitude. When c > c,, we find numerically a globally 
connected branch of travelling waves in agreement with the theory in $3.  This is shown 
in figure 13 (a)  for r = 0.1. A plot of the branch in the (Q,,,, S)-plane results in a balloor- 
shaped region. Considering that Qtot and S are absolute spatial invariants, it is natural 
to ask what types of solutions correspond to the interior points in the balloon region 
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FIGURE 13. Numerical branches of travelling waves in three different planes as in figure 12 but for 
r = 0.1 and c > c,. 

in figure 13 (b). A discussion will be provided in $7.  In figure 13 (c) the numerical results 
reveal the swallowtail in the (F,S*)-plane, as predicted by the weakly nonlinear 
analysis. 

Next we show results of numerical calculations for Ir - r,I and Jc - coI small. In figures 
14-16 the parameter r is equal to 0.53, which is slightly less than y o ,  and c is varied from 
c > co to c < co. Referring to figure 6 we will follow a vertical line in the (Y, c)-plane to 
the left of the point (r,, c,), so that we pass from region I1 into region V through regions 
I11 and IV (region I is qualitatively similar to that for large r as shown in figure 12). 
For six different values of c, figures 14-16 show respectively the wavenumber- 
amplitude diagram, the (Q,,,, S)-diagram and the (F, S*)-diagram. 

In figures 14(a) and 14(b), c is respectively in regions I1 and I11 of figure 6 .  The 
results agree qualitatively with the analytic predictions shown in figure 7. Lowering c 
further we meet the curve B, which indicates a bifurcation point and the numerical 
results capture this point perfectly as shown in figure 14(c). Lowering c further we find 
in figure 14(d) that the global loop and a disconnected branch are formed as the 
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FIGURE 14. Numerical branches of travelling waves in the &A)-plane for r = 0.53 and six 
different values of c: (a) c = 1.129083 > co, (b) c = 1.128754 > co, (c) c = 1.128710 > c,, 
( d )  c = 1.128699 > co, (e) c = 1.128494 = co, cf) = 1.128096 < co. 
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FIGURE 15. Same as figure 14 but in the (s, Q,,,)-plane. 
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FIGURE 16. Same as figure 14 but in the (f, S*)-plane. Blow-ups near the origin 0 where 
necessary allow for a better visualization. 
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bifurcation point breaks up as predicted analytically. When c = c,, as shown in figure 
14(e), the disconnected branch persists at finite amplitude and the global loop 
disappears. The numerical results then show in figure 14cf) that when c is in region V 
(c < c,) the disconnected branch persists. 

Next, we present the branches of travelling waves in the proper invariant spaces. 
Figure 15(a-f) shows the transition from c > c, to c < c, in the (Q,,,, ,%')-plane, where 
the bifurcation points always lie at the origin. When c < c,, the bifurcation point 
disappears but the detached branch persists even for values of c much smaller than c,. 
The weakly nonlinear analysis pointed out the importance of the (F, S*)-plane. This is 
confirmed by the numerical results. Figure 16(a-f) clearly shows the formation of the 
swallowtail that is present when r is less than r,. In the present case ( r  just below r,), 
the numerical results show that the swallowtail only exists for values of c just above co. 
In figure 16(a-d), c is above c,. In figure 16(a), there is a sharp change in slope on the 
right-hand branch (the capillary branch) near the origin. As c is decreased, the capillary 
branch crosses itself and a small swallowtail with two cusps appears near the origin (see 
figure 16b). As c is decreased even further, the cusp point on the left moves towards 
the left-hand branch (the gravity branch). A second swallowtail appears along the 
gravity branch but almost immediately merges with the other swallowtail. This case, 
which is shown in figure 16(c), corresponds to the merging of the two branches of 
travelling waves which was already described in figure 14(c). This bifurcation point is 
denoted by M in all three planes. As one continues to decrease c, the detached branch 
moves down and the swallowtail corresponding to the globally connected branch 
shrinks. This is shown in figure 16(d). Finally, for c = co the swallowtail disappears 
and for c < c, the remaining branch keeps moving downward (see figure 16e,f). 

6. Analogy with the Kelvin-Helmholtz instability 
There is an interesting mathematical analogy between the spatial bifurcations near 

the critical point at which c = cg and the temporal bifurcations near the Kelvin- 
Helmholtz instability. The Hamiltonian structure of the Kelvin-Helmholtz problem 
has recently been investigated by Benjamin & Bridges (1992). The basic Hamiltonian 
structure for the time-dependent problem can be seen by considering a single-mode 
approximation of the linear problem. 

The interface boundary conditions for the linearized time-dependent problem are 

1 v t + U v x - $ y  = o  

P($t + W X )  - P W  + U ' $ 2  + ( P  -P'> 84 - c v x x  = 0 

yt+U'y,-$j = O  at y =  0. (6.1) 

A single-mode approximation for the linearized problem with infinite upper and lower 
layers is 

y(x, t )  = ql(t) cos KX + q2(t) sin kx, 
$(x, t) = eky[el( t )coskx+f,( t )s inkx] ,  

&(x, t )  = eckU [ei(t) cos kx +fi ( t )  sin kx]. 

The functions $($') are harmonic in the lower (upper) half-plane and satisfy the far- 
field boundary conditions. Substitution into the interface boundary conditions (6.1) 
results in a set of six ordinary differential equations which can be cast into the form 

JZ, = V E ( Z ) ,  (6 .2~)  
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- -  - 
;<Go u = uo u > Go 

FIGURE 17. Kelvin-Helmholtz instability : a temporal collision of pure imaginary eigenvalues 
leading to instability. 

with 

def 
Z =  

0 -PI2 P ’4  
and J =  PI2 0 0 c -$I2 0 0 

9 (6.2b) 

where l2 is the identity on W2. The functional E is the total energy (see Appendix A 
equations (A 3) and (A 4)) evaluated on the single-mode approximation above: 

E = -  ;Pk ( e; +Z) +m - P w e l  42 -f, 41) 

+P’U’k(e’,42-~41)+$[(P-P’)g+ak21 M + 4 3  (6.3) 
Differentiating the energy we find that 

6 0 0 PUk 0 -p’U‘k 
0 6 -pUk 0 p‘U’k 

0 ’  
0 

P’k :I I -p‘U‘k 0 0 0  0 

0 -pUk pk 0 0 
PUk 0 0 pk 0 

0 p’U‘k 0 0 p’k 

D2E(0) = 

where 6 = (p -p ’ )g+ak2 .  
The operator J in (6.2) is skew-symmetric but not invertible. The single-mode 

approximation to the Kelvin-Helmholtz problem has a Hamiltonian formulation but 
it is a generalized Hamiltonian formulation (Benjamin & Bridges 1992 study the full 
nonlinear problem and show that it can be transformed in such a way that it has a 
standard Hamiltonian formulation). 

It is interesting to contrast the Hamiltonian structure in (6.2) for the time-dependent 
problem with the Hamiltonian structure (2.13) for the space-evolution problem. Both 
problems have a collision-of-eigenvalues singularity although the Kelvin-Helmholtz 
problem has a collision of temporal eigenvalues while the problem (2.13) has a collision 
of spatial eigenvalues. 
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k 

FIGURE 18. The velocity difference u” = U -  U’ between the two fluid layers as a function of 
wavenumber k showing the Kelvin-Helmholtz unstable region. 

Let Z = BeAt in (6.2a), then the eigenvalue problem for h is 

D2E(0) Z = hJZ 
which is easily solved to find 

k 
, 

where 

The eigenvalues in (6.4) are plotted in the complex A-plane in figure 17 and figure 18 
shows the critical curve ii2 = u“: in the (k,G2) plane. In the present case, since the 
eigenvalue h is a temporal eigenvalue, when Re (A )  =k 0 there is in fact instability (unlike 
the spatial case in figure 2). The nonlinear bifurcations of periodic travelling waves in 
the neighbourhood of the Kelvin-Helmholtz instability have been studied recently by 
Benjamin & Bridges (1992). The similarity of the spatial bifurcation structure for the 
nonlinear problem in $6 3-5 with the temporal bifurcations in the Kelvin-Helmholtz 
instability is remarkable. 

7. Discussion 
General properties of steady waves at the interface between two fluids have been 

presented. A new formulation of the governing equations as a Hamiltonian system 
leads to new variational principles as well as general results on secondary spatial 
bifurcations analogous to the superharmonic instability. 

Nonlinear interfacial travelling waves in the neighbourhood of the singularity, 
c = cg, in the linear dispersion relation, have been studied using analytical and 
numerical methods. New branches of periodic travelling waves were found by 
analysing a neighbourhood of a second singularity in the nonlinear problem. Basic to 
the Hamiltonian structure are the integrals (F, S) which are related to the energy flux 
and the flow force. We showed that the (F, S)-space, where P i s  the averaged value in 
space of F, considered as a two-dimensional parameter space, is a natural diagram on 
which to plot branches of travelling waves: when the difference in density between both 
fluids is small, the (F, S)-diagrams contain cusp points which correspond to secondary 
bifurcations. 
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In experiments on two-layer flows, there exist parameter values at which such waves 
could be realized. For example, if one takes the first set of fluids used by Pouliquen 
et al. (1994) in their experiments (water and an equal mixture of silicone oil V2 and 
1-2-3-4-tetrahydronaphtalene) which corresponds to r = 0.0417, one finds that the 
wavelength and wave speed corresponding to the minimum of the dispersion curve are 
2x/k, = 6.4 cm and co = 9.1 cm s-l. These values appear to be reasonable values for 
experiments. 

In the invariant spaces, that is parameter values for level sets of the functionals 
(F, S),  the transition from the water-wave case ( r  = 1) to the Boussinesq limit (r  + 0) 
has been clearly demonstrated. When the two fluids have comparable densities, both 
branches of travelling waves which bifurcate from the trivial solution are connected in 
the form of a swallowtail in the (F,S)-plane (cf. figures 1 and 2). The presence of a 
swallowtail in invariant space, as shown in figure 2, is a generally occurring property 
in the neighbourhood of a collision of a pair of eigenvalues of opposite signature in a 
Hamiltonian system (see van der Meer 1985, pp. 78-9) or in a reversible system in the 
presence of a 1 : l  resonance (see Iooss & PCroueme 1993). In a nonlinear finite- 
dimensional Hamiltonian system or in a reversible system with a collision of 
eigenvalues - in normal form - it is known that the points outside the swallowtail 
correspond to unbounded solutions while each point in the interior of the swallowtail 
corresponds to a quasi-periodic state and along the top boundary, between the two 
cusp points, the stable and unstable manifolds of the hyperbolic periodic orbits are 
joined to form a heteroclinic. Adapting those results to the present context we can 
speculate that there exist spatially quasi-periodic travelling waves for this problem and 
interesting solitary waves with periodic tails not decaying at infinity (see Dias & Iooss 
1994). The quasi-periodic travelling waves are natural extensions of the linear quasi- 
periodic travelling waves. In other words, referring to the dispersion curve in figure 
1 (a),  for fixed c > c, there exist two periodic states of wavenumbers k, and k ,  whose 
combination forms a quasi-periodic state when k J k ,  is irrational with waveform 
~ ( x )  = A ,  eilciZ + A ,  eikzx. 

The rigorous existence or linear stability of the periodic waves in $93-5 has not been 
considered. However, the linear stability problem is tractable and therefore there are 
a number of methods that could be used to study the linear stability. For example it 
should be possible to treat rigorously the existence question and the linear stability 
question together using Hamiltonian centre manifold theory as in Bridges & Mielke 
(1995). 

The singularity r = ro, which corresponds to the transition between the water-wave 
case and the Boussinesq limit, has also been studied in detail in this paper. The value 
r, corresponds to a density ratio p’/p equal to about 0.28. One can imagine that such 
a density ratio could be obtained experimentally. In addition to the families of periodic 
waves found here in the neighbourhood of the singularity c = c, and r = r,, there 
should also be new branches of solitary waves. Preliminary results indicate that in the 
transition region there are two kinds of spatially quasi-periodic travelling waves and 
solitary waves decaying algebraically towards either a periodic state or a uniform flow. 

The theory presented in the paper is applicable to more general problems than the 
ones considered here. The starting point of the paper is the singularity c = cg and this 
singularity appears in other contexts. For example in the dynamics of interfacial waves 
with a current U (cf. Gargett & Hughes 1972; Peregrine 1976, p. 52) the singularity 
c, + U = c gives rise to stopping velocities. Associated with the stopping velocities are 
interesting wave patterns that have also been observed in the open ocean (cf. Gargett 
& Hughes 1972, figures 1 and 2). The nonlinear structure of such problems should be 
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similar to that reported here. It has also been shown recently that several phenomena 
occurring in the propagation of capillary-gravity interfacial waves also occur in the 
context of internal waves (see for example the paper by Akylas & Grimshaw 1992 on 
generalized solitary waves) or in the context of large-amplitude gravity waves (Baesens 
& MacKay 1992). From a theoretical point of view, capillary-gravity interfacial waves 
have the advantage that secondary bifurcations occur at low amplitude and can 
therefore be studied analytically. 

The work of the first author was carried out while supported by a Research 
Fellowship from the Alexander von Humboldt Foundation held at the Universitat 
Stuttgart. 

Appendix A. Conservation laws and spatial invariants 
In this Appendix the four basic conservation laws for the time-dependent two-layer 

fluid problem are recorded. The channel is confined between two walls at y = - h‘ and 
y = h. The governing equations are given by (2.1) and the boundary conditions at the 
walls by (2.2). The pressure in each layer can be obtained from Bernoulli’s equation: 

in the upper layer and 

in the lower layer. The boundary conditions at the interface y = ~ ( x ,  t )  are 

and 

P4t + 344: + 4;) +P = 0 

$4; + + $;I”) + p’gy +p’ = 0 

T t + 4 x T x - 4 y  = 0, T t + 4 : T x - $ ;  = 0 

P4t - P ’ 6  + M4: + 4;) - %w2 + 4;) + ( P  - P’) gT - UW,  = 0. 
The four basic conservation laws for the time-dependent two-layer fluid problem in 

a stationary frame of reference are 

I + aQ/ax = 0 (mass conservation - lower fluid), 

am’/at + aQ’/ax = 0 (mass conservation - upper fluid), 

aI/at + aS/ax = 0 (impulse conservation), 

aE/at +aF/ax = 0 (energy conservation). 

The fluxes for the conservation laws are 

The densities for the conservation laws are 
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where 
h 

K=fhH$:+$;)dY+/ B &’($;2+$:)dY, ] (A4) 

v,=l(  g 2 p - p’)gq2, v, = 4 ( l  +q:Y2-  11. 

The conservation laws can be verified by carrying out the differentiation in 
(A 1)-(A 4) and using the governing equations. Of interest in the present work 
are the conservation laws when restricted to the moving frame. For states that are 
steady relative to the frame moving with speed c (XHX-ct), the conservation laws 
(A 1) reduce to spatial invariants, that is 

d d 
dx dx 
-(Q-cwz) = -(Q’-cwz’) = 0, 

d d 
dx dx 
-(S-cZ) = - (F-cE)  = 0. 

The fourth expression in (A 1) which is called the relative energy flux by Hogan (1983), 
does not produce an independent spatial invariant. In fact, using (A 2 H A  4) one finds 

F- CE = c(S- cZ). 
Defining 

it follows that S, Q and Q are absolute _ _ _  spatial invariants for uniformly travelling 
waves. The set of spatial invariants {S ,Q,Q‘}  forms an algebra and so any linear 
combination of spatial invariants is a spatial invariant. Hence Q,,, = Q+ Q’ is also a 
spatial invariant. Hogan (198 1) found some relationships between integral properties 
of capillary-gravity interfacial waves. We denote spatial averages by putting a hat on 
top of the physical quantity. Some relationships in infinite depth are 

f =  ~ Q c ,  Si = 4k-3fg- fg, S =  2 8 - 3 t -  t, E =  c(3f-2fg). 

The average of the impulse can also be written as 

where L is the wavelength. 
Of interest for the spatial Hamiltonian structure is a quantity closely related to the 

energy flux F restricted to the moving frame, which is defined as F = F/c- CZ and 
which is equal to 

One easily finds that its spatial average is = k- 2 C. 
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Appendix B. Spatial Hamiltonian structure 
In this Appendix we record further details about the spatial Hamiltonian structure 

introduced in $2. For definiteness the formulation, introduced at the beginning of $2, 
for the finite channel is considered with governing equations (2.13). We will use the 
notation 2 for the Hamiltonian. 

By definition a Hamiltonian system is a triple (A’, wrl, 2)  where A’ is the phase 
space, w, is a non-degenerate closed two-form and 2: A’+ R is the Hamiltonian 
functional. In the present case the phase space consists of functions of the form (2.12) 
where the first four components are real numbers with - h < y < h’, the fourth and 
fifth components are defined on y E ( - h, y) and the last two components are defined on 
Y E  (7, h’). Associated with such functions are the boundary conditions (2.2) and (2.9). 
The inner product for elements in the phase space is defined in (2.15). 

The skew-symmetric operator K(Z)  defined the two-form w, and a necessary 
condition for a Hamiltonian structure is that w, be closed. The skew-symmetry of K ( Z )  
is verified by noting that 

( U ,  K(z) vv = - ( K ( Z )  u, Orl. 

w , ( U  v) = ( K ( Z )  u, 0, 
The two-form w, is defined by the identification 

resulting in 

w7 = adw A dy - Q d@ A dy + a’d@’ A dy + r, (du A d$) dy + (du’ A d$’) dy. (B 1) 

The two-form wv is closed if dw, = 0 where d represents exterior differentiation. To 
verify closure we show that w, is exact. Let 

Then using the properties of the exterior derivative we find 

da, = a dw A dv + dy A (U d$)l,=, - dy A (u’ d$’)I,=, 

+ f, du Ad$ d y + r  du‘ A d$’ dy 

= w, 

and since dda, = 0 it follows that w1 is closed. 

structure and it is related to the energy flux. Parametrizing a, by x results in 
The one-form a, in (B 2) is the basic one-form or (spatial) action for the Hamiltonian 

which is related to the energy flux relative to a moving frame (cf. (A 7)). 
The governing equation for the Hamiltonian system is given abstractly by 

z, = X ( Z ) ,  (B 3) 

(B 4) 

(B 5 )  

where X ( Z )  is defined by 

for all admissible 6. However, since K ( Z )  is not invertible we write (B 3) in the form 
“,(Xr 8 = ( V H ( Z ) ,  0, 

K ( Z )  z, = V X ( Z ) .  
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The kernel of K(Z) ,  defined in (2.12), is two-dimensional with 

153 

Therefore (B 5 )  is subject to the conditions 

and 

Therefore these last two equations are constraints. They are reformulations, in terms 
of the new coordinates, of the kinematic conditions. Note however that when CT = 0 the 
constraints are automatically satisfied. 

Finally, in this Appendix, the relations between symmetries and conservation laws 
for the spatial Hamiltonian system are considered. Let 

V =  and V ’ =  

Then Z + s V  is the group action corresponding to constant perturbation of the 
potential q5 and Z +  s’ V’ is the group action corresponding to constant perturbation of 
the potential 4’. It is precisely these two symmetries that generate the conserved 
quantities Q and Q .  The connection is established using Noether’s theorem adapted 
to the spatial setting (cf. Bridges 1994, Appendix A). First note the identities 

K ( 2 )  V = V Q ( Z )  and K(Z)  V’ = V Q ( Z )  (B 9) 

which follow from the definition of K ( Z )  (in (2.12)) and from 

V Q ( Z )  = and V Q ’ ( Z ) =  

0 
0 

0 
0 
0 
0 
0 
1 

I -u 



154 T. J .  Bridges, P .  Christodoulides and I;. Dias 

Now, since X ( Z )  is invariant under constant perturbation of the potential 
$ : X ( Z + s v )  = X ( Z )  for all EER,  it follows that 

d 
0 = -X(Z+.Vl = ( V X ( Z ) ,  v>v 

de E - 0  

= (K(Z)Zm Qv 
= - ( 2 2 9  K ( Z )  v>? 
= - (Zm V Q W ) ) ,  
= - dQ/dx 

using (B 5), skew-symmetry of K ( Z )  and the first identity in (B 9). This verifies that Q 
is indeed a spatial invariant. In other words the spatial formulation of Noether’s 
relation (B 9) implies the spatial invariance of Q. A similar argument verifies that 
Qz = 0. 

Appendix C. Uniform flows and criticality 
In this Appendix, we consider steady flows in a stationary frame of reference with 

a current /3 in the lower layer and p’ in the upper layer. The governing equations are 
the same as in $2, except for the boundary conditions at the interface 

and 

Following the same steps as in $2 with essentially replacing c by -/3 (resp. -p’) in the 
lower fluid (resp. upper fluid), one obtains a spatial Hamiltonian formulation similar 
to (2.13), which can be written in the form 

where 

~ s [ ~ / 3 + 4 , ~ 2 + ~ ~ l - ~ ” ~ ~ + 4 ~ ~ 2 + 4 ~ l + ~ P - P ’ ~ ~ y - ~ ~ ,  = R. (C 2) 

K ( Z )  2, = V X ( Z )  = V S ( 2 )  -pVQ(Z)  -p’VQ’(Z), (C 3 )  

(C 4 4  Q = fhudy,  Q’ = r u ’ d y ,  
1 

+Ry-~(p-p’)gy2+q[1-(1-w2)1/2]. (C 4b)  

The Hamiltonian formulation (C 3) leads to an interesting variational principle for 
uniform flows. Uniform flows are steady states that are also x-independent. It is evident 
from (C 3 )  that such states satisfy 

(C 5 )  

for some constants /3 and p’. Equation (C 5 )  can be characterized as the Lagrange 
necessary condition for the following constrained variational principle. Let q and q’ be 
level sets of the mass flux functionals Q and Q’. Then uniform flows, with R fixed, of 
the two-layer fluid problem in a finite channel correspond to critical points of the flow 
force restricted to level sets of the mass fluxes: 

V S ( Z )  - pVQ(2) - p’VQ’(2) = 0 

crit (S)IQ-q, Q’-q’’ (C 6 )  
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with Lagrange necessary condition (C 5). Solving the Lagrange necessary condition 
using the gradients of the functionals (C 4) results in 

u =pp,  u’ =p‘P’, ’I = 7. 
where 

and R is considered arbitrary but specified. 
Note that an elementary consequence of the Lagrange multiplier theory is 

that is, the flow velocities /3 and /3’ are given by slopes in the flow force and mass flux 
parameter space. It follows from (C 8) that 

(C 9) 1. aPla9 aPla9’ a2spq2 a2spq aq/ 
(aP’la9air la9~1 = ( aZs/aq’ aq azs/aq/z 

An interesting consequence of the above variational principle is that critical flows 
can be defined by the condition 

This is verified as follows. Using (C 4) and (C 7 )  the mass fluxes evaluated at the 
uniform flow are 

Q = p H P  and Q’=p‘H‘/3’, 

where H = 7-1- h and H’ = h’-7. Noting that 7 depends on /3 and p’ via (C 7 )  the 
Jacobian is 

and therefore 

resi  

Define Froude numbers for the lower and upper layers by 

Then the condition (C 10) applied to (C 11) leads to 

J 2 + L F ‘ 2  = 1, 
P-P P-P’ 
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which is the well-known condition for criticality (cf. Mehrota & Kelly 1973, equation 
(4)). It also follows from (C 9) that critical flows give rise to a singularity in the Hessian 
of the flow force with respect to the mass fluxes. Indeed, the variational principle 
(C 6) is singular precisely at criticality. 

Appendix D. A variational principle for periodic waves coupled with a 
mean flow 

When mean flow effects are important, as in the case of a periodic travelling wave 
in a finite-width channel, the variational principle of $ 3 for periodic travelling waves 
can be generalized. Here we present a variational principle for periodic travelling waves 
in a finite channel. The coordinate system for the channel cross-section, introduced at 
the beginning of $2, is used where y = - h(y  = h’) at the lower (upper) wall and y = 7 
separates the two fluids. In order to incorporate mean elevation changes the Bernoulli 
constant R in (2.4) is no longer assumed to be known and mean flows /3 and p’ are 
incorporated in the equations (see Appendix C). The RT term is separated from the 
flow force definition in (C 4). Therefore, in this Appendix, the flow force and excess 
mass density are 

J -;(p-p’)g$2+@[1-(2/1-W2)1’2], 

P ( Z )  = 7. 

The governing equation (C 3) then takes the form 

K ( Z ) Z x  = V S ( Z ) +  RVP(Z)-PVQ(Z)-p’VQ’(Z) ,  (D 2) 

with Q ( Z )  and Q’(2) as defined in (C 4). However by scaling X H  kx so that k appears 
in the equation, as in $3, the governing equation becomes 

k K ( Z )  2, = V S ( Z )  + R V P ( 2 )  - p V Q ( Z )  -p’VQ’(Z).  (D 3) 

But K ( Z ) Z ,  is the gradient of the spatial action with density 

With respect to the inner product (2.15), including also integration over x, 
V B ( Z )  = K ( Z ) Z x  and therefore (D 3) is equivalent to 

with 
V Y(Z; k ,  R ,  p, p’) = 0 (D 5 4  

Y ( Z ;  k ,  R ,p ,p ’ )  = [ S ( Z ) - k B ( Z ) +  RP(Z) -pQ(Z) -p ’Q’ (Z) ]dx .  (D 5b) 1: 
Equation (D 5) is the Lagrange necessary condition for the following constrained 
variational principle : periodic travelling waves with coupled mean-flow eflects correspond 
to critical points of the flow force restricted to level sets of the spatial action, mean 
elevation and mass fluxes : 

(D 6) 

where the hat indicates averaging over x from 0 to 27c. 

crit (S)IB+, P = ~ ,  Q = ~ ,  Q , = ~ ,  
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The Lagrange multiplier theory leads immediately to the interesting identities 

and 
I ak ak ak ak \ 

where Hess,(S) is the 4 x 4 Hessian of S with respect to I. The minus sign is due to 
convention (the way the Bernoulli constant is defined). 

The constrained variational principle (D 6) is non-degenerate at a given state if 
det [Hess,(S)] =k 0. The above variational principle is a generalization of the variational 
principle for uniform flows, (C 6), to the case of periodic waves coupled to the mean 
flow. The above variational principle can be used to organize the parameter structure 
in numerical computations, such as those in $ 5  when the fluid is of finite depth, when 
coupled mean flow effects are important. 
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